BRIGHAM HEALTH BRIGHAM AND WOMEN'S HOSPITAL

# Management of In-Stent Chronic Total Occlusions

## Kevin J. Croce MD, PhD

Director CTO and Complex Coronary Artery Intervention Program

**Director BWH Translational Discovery Laboratory** 

**Harvard Medical School** 





TCTAP202 VIRTU

@kevinjamescroce

kcroce@bwh.harvard.edu



HARVARD MEDICAL SCHOOL TEACHING HOSPITAL



## Background

#### Occlusive ISR is an uncommon cause of CTOs (<5%)

#### Most are symptomatic

### Presence of stent(s) within CTO

- 'Roadmap' (decreases anatomic ambiguity)
- Protection against perforation



## **ISR CTO Success Rates**



## **ISR CTO - Higher Long-Term MACE**



JACC CV Invn (2017) Vol 10

Clinical Research in Cardiology (2020) 109:628–637

## Predictors of in-stent CTO Procedural Failure



## Hybrid Approach to Within-Stent CTO



\* Consider as first line strategy if proximal cap tapered, highly angulated entry into the CTO, very severe proximal cap disease or proximal cap begins before stent margin

# Factors that favour initial use of the CrossBoss

- Proximal cap located within the stent
- Blunt proximal cap
- Distal cap located within the stent

#### Factors that favour initial use of AWE

- Tapered proximal cap
- Proximal cap that begins before the stent or there is significant disease at the inlet.
- Highly angulated entry into the CTO
- Stent fracture or underexpansion at the inlet
- Very resistant proximal cap

## Algorithm for Escalating CrossBoss Back-Up



## Overcoming CrossBoss Failure Within Tortuous In-Stent CTO Segments



- 68 year old male
- CABG 2007
- Redo sternotomy 2019 for AVR
- ACS



## **Diagnostic Angiogram**



Patent LIMA



- Culprit VG-OM
- Multlayer DES thrombus

## LCX CTO PCI

#### Plan

- Dual injection
- Cross boss
- AWE
- Retrograde
  option



#### Cross Boss Stalled $\Rightarrow$ Antegrade wire escalation: Resistant proximal Cap - Pilot 200, Mongo, Gaia 3 Turnpike / Spiral = no cross - swap to caravel

Off target



Marker wire



#### **Resistant distal cap**



### True Lumen

# Sion Blue exchange - caravel tip broke off



#### Left caravel tip on wire



#### NC balloon unexpandable IVUS = calcium, only 45% stent expansion



### NC balloon expandable

# Overlapping DES w / post dilation



#### 1.4mm laser





#### Gooseneck snare caravel tip w wire



#### Final – did not coil graft



IVUS improved expansion 120cc contrast Discharge hospital day 3 @ baseline renal function



#### If it is not possible to secure entry within the stent, a retrograde approach may be required



A retrograde approach if available will resolve this issue

## **Sub-intimal Crush?**



**RCA CTO PCI:** 

-<u>Three</u> Layer ISR failure

-Resistant proximal cap



### **RCA CTO PCI:**

- Balloon un-crossable
- Substrut
- Parallel wire Pilot 50
- Balloon 2.0 and 3.0mm (waist)
- IVUS





**RCA CTO PCI:** 

- 1.4mm ELCA – no cross



RCA CTO PCI: - Stent Roto: 1.25 and 1.75mm burr - 190RPM 10 passes to

- 190RPM, 10 passes total



## **RCA CTO PCI:**

- 3.5mm angiosculpt
- 4.0 mm NC balloon
- Brachytherapy
- Final result



## Conclusions

- Angiographic features of ISR CTO PCI failure include
  - Tortuosity (stent fracture)
  - Ostial lesions
  - Calcification
- The hybrid strategy applies to ISR with a few additional considerations
- If the original stent is significantly undersized / stent fracture within stent passage may be challenging
- Intravascular imaging alters ISR treatment decision making